A generalization of the binomial coefficients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

A Generalization of Binomial Queues

We give a generalization of binomial queues involving an arbitrary sequence (mk)k=0;1;2;::: of integers greater than one. Diierent sequences lead to diierent worst case bounds for the priority queue operations, allowing the user to adapt the data structure to the needs of a speciic application. Examples include the rst priority queue to combine a sub-logarithmic worst case bound for Meld with a...

متن کامل

A Generalization of the Digital Binomial Theorem

In [9], the author introduced a digital version of this theorem where the exponents appearing in (1) are viewed as sums of digits. To illustrate this, consider the binomial theorem for N = 2: (x + y) = xy + xy + xy + xy. (2) It is easy to verify that (2) is equivalent to (x+ y) = xy + xy + xy + xy, (3) where s(k) denotes the sum of digits of k expressed in binary. For example, s(3) = s(1 · 2 + ...

متن کامل

Geometry of Binomial Coefficients

This note describes the geometrical pattern of zeroes and ones obtained by reducing modulo two each element of Pascal's triangle formed from binomial coefficients. When an infinite number of rows of Pascal's triangle are included, the limiting pattern is found to be "self-similar," and is characterized by a "fractal dimension" log2 3. Analysis of the pattern provides a simple derivation of the ...

متن کامل

On the Conditioned Binomial Coefficients

We answer a question on the conditioned binomial coefficients raised in and article of Barlotti and Pannone, thus giving an alternative proof of an extension of Frobenius’ generalization of Sylow’s theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1992

ISSN: 0012-365X

DOI: 10.1016/0012-365x(92)90138-6